Rich Gold

A Revolutionary Cryptocurrency

Built For Investors And Gamers

RichGold Features

Blockchain

All your transaction occured inside the platform are secured by blockchain. This technology record all transactions in and out of your wallet.

Community

RichGold users will engage in unique communities of virtual economy and game content, powered by developers to provide the tools they need.

Gaming

Unlike traditional mining where you put your machine on the strains for its CPU Power, Urichie enable you to put the strains on skills in a fun filled game.


Gateway

Ease of use for the decentralized payment gateway, providing a unique new payment structure to increase trust between merchants and customers.

SDK

Open source SDK and samples will be provided for developers to contribute in further development, enable you to apply the features needed.

Wallet

RichGold Wallet integrated to games and websites that users trust, enabling you to synced with other Blockchain addressed.


Market

Internal and external exchange service integrated within to serves the exchanges of BTC / RIG and some other coins such as ETH, XMR and DASH

Accessibility

Investment is denominated in divisible tokens, enabling users to diversify their asset holdings and invest with even modest portfolio size.

Immutability

Blockchain technology keep your asset in the safe place, fully secured with blockchain technology, providing you a peace of mind


Mining

Have little CPU power ? you can still mine through the game, build resources on your mining village to collect and generate RichGold tokens.

Affiliate

Overhead is eliminated and users pay substantially lower commissions on both purchase and rental transactions processed via smart contracts.

Assurance

Asset ownership or rental agreements are guaranteed by the blockchain technology, which provides tamper-proof decentralized store of records

CONTRACT INFORMATION

Contract address: 0xc34b05e604ce1ef50ce15a6107b92aeea0caf4c0

Token address: 0x3d4b0c39dd79f32fbf435b35fdeed567596bd341

For token purchase just make transfer from your eth address* (sender wallet should fully suppoer ERC20 standars of tokens, MEW(myetherwallet.com) as example) to HMT address : 0xb6d5414a1550b70d3a1280081b115fddc4a465d2
For purchasing with referral bonus - please read and follow needed steps.
*you must have access to your private keys - for recieving dividends.

Smart contract source:

	
					
					pragma solidity 0.4.18;

/**
 * @title SafeMath
 * @dev Math operations with safety checks that throw on error
 */
library SafeMath {
  function mul(uint256 a, uint256 b) internal constant returns (uint256) {
    uint256 c = a * b;
    assert(a == 0 || c / a == b);
    return c;
  }

  function div(uint256 a, uint256 b) internal constant returns (uint256) {
    // assert(b > 0); // Solidity automatically throws when dividing by 0
    uint256 c = a / b;
    // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    return c;
  }

  function sub(uint256 a, uint256 b) internal constant returns (uint256) {
    assert(b <= a);
    return a - b;
  }

  function add(uint256 a, uint256 b) internal constant returns (uint256) {
    uint256 c = a + b;
    assert(c >= a);
    return c;
  }
}


/**
 * @title ERC20Basic
 * @dev Simpler version of ERC20 interface
 * @dev see https://github.com/ethereum/EIPs/issues/179
 */
contract ERC20Basic {
  uint256 public totalSupply;
  function balanceOf(address who) public constant returns (uint256);
  function transfer(address to, uint256 value) public returns (bool);
  event Transfer(address indexed from, address indexed to, uint256 value);
}

/**
 * @title ERC20 interface
 * @dev see https://github.com/ethereum/EIPs/issues/20
 */
contract ERC20 is ERC20Basic {
  function allowance(address owner, address spender) public constant returns (uint256);
  function transferFrom(address from, address to, uint256 value) public returns (bool);
  function approve(address spender, uint256 value) public returns (bool);
  event Approval(address indexed owner, address indexed spender, uint256 value);
}


/**
 * @title Basic token
 * @dev Basic version of StandardToken, with no allowances.
 */
contract BasicToken is ERC20Basic {
  using SafeMath for uint256;

  mapping(address => uint256) balances;

  /**
  * @dev transfer token for a specified address
  * @param _to The address to transfer to.
  * @param _value The amount to be transferred.
  */
  function transfer(address _to, uint256 _value) public returns (bool) {
    require(_to != address(0));

    // SafeMath.sub will throw if there is not enough balance.
    balances[msg.sender] = balances[msg.sender].sub(_value);
    balances[_to] = balances[_to].add(_value);
    Transfer(msg.sender, _to, _value);
    return true;
  }

  /**
  * @dev Gets the balance of the specified address.
  * @param _owner The address to query the the balance of.
  * @return An uint256 representing the amount owned by the passed address.
  */
  function balanceOf(address _owner) public constant returns (uint256 balance) {
    return balances[_owner];
  }

}

/**
 * @title Standard ERC20 token
 *
 * @dev Implementation of the basic standard token.
 * @dev https://github.com/ethereum/EIPs/issues/20
 * @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
 */
contract StandardToken is ERC20, BasicToken {

  mapping (address => mapping (address => uint256)) allowed;


  /**
   * @dev Transfer tokens from one address to another
   * @param _from address The address which you want to send tokens from
   * @param _to address The address which you want to transfer to
   * @param _value uint256 the amount of tokens to be transferred
   */
  function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
    require(_to != address(0));

    uint256 _allowance = allowed[_from][msg.sender];

    // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
    // require (_value <= _allowance);

    balances[_from] = balances[_from].sub(_value);
    balances[_to] = balances[_to].add(_value);
    allowed[_from][msg.sender] = _allowance.sub(_value);
    Transfer(_from, _to, _value);
    return true;
  }

  /**
   * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
   *
   * Beware that changing an allowance with this method brings the risk that someone may use both the old
   * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
   * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
   * @param _spender The address which will spend the funds.
   * @param _value The amount of tokens to be spent.
   */
  function approve(address _spender, uint256 _value) public returns (bool) {
    allowed[msg.sender][_spender] = _value;
    Approval(msg.sender, _spender, _value);
    return true;
  }

  /**
   * @dev Function to check the amount of tokens that an owner allowed to a spender.
   * @param _owner address The address which owns the funds.
   * @param _spender address The address which will spend the funds.
   * @return A uint256 specifying the amount of tokens still available for the spender.
   */
  function allowance(address _owner, address _spender) public constant returns (uint256 remaining) {
    return allowed[_owner][_spender];
  }

  /**
   * approve should be called when allowed[_spender] == 0. To increment
   * allowed value is better to use this function to avoid 2 calls (and wait until
   * the first transaction is mined)
   * From MonolithDAO Token.sol
   */
  function increaseApproval (address _spender, uint _addedValue)
    returns (bool success) {
    allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
    Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
    return true;
  }

  function decreaseApproval (address _spender, uint _subtractedValue)
    returns (bool success) {
    uint oldValue = allowed[msg.sender][_spender];
    if (_subtractedValue > oldValue) {
      allowed[msg.sender][_spender] = 0;
    } else {
      allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
    }
    Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
    return true;
  }

}



contract RichGoldToken is StandardToken {

  string public constant name = "Rich Gold Token";
  string public constant symbol = "RIG";
  uint256 public constant decimals = 18;
  uint256 public constant INITIAL_SUPPLY = 250 * 1e6 * 1 ether;

  function RichGoldToken() public {
    totalSupply = INITIAL_SUPPLY;
    balances[msg.sender] = INITIAL_SUPPLY;
  }
}

					
					

“ With e-currency based on cryptographic proof,
without the need for a third party middleman,
money can be made secure and transactions effortless. ”

- SATOSHI NAKAMOTO -